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-- ~~~~~~~~~~~~ ABSTRACT

This paper deals with the question of coalition formation in n-person

cooperative games . Two abstract game models of coalition formation are

proposed . We then study the core and the dynamic solution of these abstract

games. These models assume that there is a rule governing the allocation

of payoffs to each player in each coalition structure called a payoff

solution concept. The predictions of these models are characterized for

the special case of games with side payments using various payoff solution

concepts such as the individually rational payoffs, the core, the Shapley

value and the bargaining set ~~~~~ Some modifications of these models

are also discussed .
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SIGNIFICANCE AND EXPLANATI ON

The theory of n—person cooperative games is a mathematical theory

of coalition behavior . A fundamental problem posed in game theory is to

determine what outcomes are likely to occur if a game is played by

“rational players”. I.e. given an n—person cooperative game, it is natural t~

inquire (1) what will be the final allocation of payoffs to each of th~-

players and (2) which of the possible coalitions can be expected to form .

Since the publication in 1944 of the monumental work Theory of Games

and Economic Behavior [15) by von Neumann and Morgenstern, most of th.’

research in n—person game theory has been concerned explicitly with

predicting playe:s’ payoff and only implicitly (if at all) with predicting

which coalitions shall form. In this paper, the primary emphasis is on the

• second aspect of coalition behavior , namely the formation of coalitions .

Two models of coalition formation are proposed based on the theory of

n-person games. As in most of game theory , our models ar e normative a nd

use only endogenous argunients, that is, only informat ion contained in the

characteristic function is used .

The responsibility for the wording and views expressed in this descri ptive
summary ]ies with MRC, and not with the author of this report.
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ON COALITION FORMATION : A GAME-THEO RETICA L APPROACH

Prakash P. Shenoy

1. Introduction

The theory of n—person cooperative games is a mathematical theory of coali-

tion behavior. A fundamental problem posed in game theory is to determine

what outcomes are likely to occur if a game is played by “rational players” .

I.e. given an n—person cooperative game , it is natural to inquire ( 1) what will

be the f inal  allocation of payoffs to each of the players and (2) which of the

possible coalitions can be expected to form. These two aspects of coalition

behavior are closely related . The final allocation of payoffs to each of the

players depend on the coalitions that finally form, and the coalitions that

finally form depend on the available payoffs to each player in each of these

coalitions. Since the publication in 1944 of the monumental work Theory of

Games and Economic Behavior [151 by von Neumann and Morgenstern, most of the

research in n—person game theory has been concerned explicitly with predicting
S

players’ payoff and only implicitly (if at all) with predicting which coalitions F
shall form. In this paper, the primary emphasis is on the second aspect of

coalition behavior , namely the formation of coalitions . Two models of coalition

formation are proposed based on the theory of n-person games. As in most of

game theory, our models are normative and use only endogenous arguments , that

is, only information contained in the characteristic function is used .

A brief review of abstract games and its solutions is presented in Section 2.

In Section 3, two abstract game models of coalition formation are proposed. In

one approach, payoff allocations and coalition structures are modeled as the

outcomes of an abstract game on which an appropriate domination relation is

This research was sponsored in part by the United States Army under Contract - ì
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1~
defined . In another approach, coalition structures alone are modeled as out—

comes. In both cases, we study the core and the dynamic solution of the

abstract game. The two models are then compared. Section 4 deals with the

-: representation of the models by means of digraphs . In Sections 5-8 , the soiw-

tions of the abstract games are characterized for the special case of games with

sid e payments using various payoff solution concepts such as the individually

rational pay o f f s , the core , the Shapley value and the bargaining set ~~~~~

Finally in Section 9 , we discuss possible modifications in the definition of

the domination relation in the case where coalition structures alone are modeled

as outcomes,

2. Abstract Games and their Solutions

An abstract 
~~~~ 

is a pair (X, dom) where X is an arbitrary set whose

members are called outcomes of the game, and dom is an arbitrary binary rela-
S

tion defined on X and is called domination. An outcome x 6 X is said to be

accessible from an outcome y 6 X, denoted by x 
~ 
y (or y -

~ 
x) ,  if there

exists ou tcomes z0 = X , Z
l~~• •~~~

Zm_l ? Zm 
= y, where m is a positive integer

such that

(2.1) x = 20 dom 21 dom 22 dom ... dom Z ,1 doni 2m 
= y .

Also assume x 4- x, i.e. an outcome is accessible from itself. Clearly the

binary relation accessible is reflexive and transitive. Two outcomes x and

y which are accessible to each other are said to communicate and we write this

as x -.: y. Since the relation accessible is transitive and reflexive, it

follows that

Proposition 2.1. Communication is an equivalence relation.

We can now partition the set X into equivalence classes. Two outcomes

are i n the same equivalence class if they communicate with each other.

—2—
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The set

(2 .2 )  Doin(x) {y € X : x dom yl

is called the dominion of x. Also, we define the dominion of any subset 
p

A C X  by

(2.3) Dom(A) = U Dom (x)
x6 A

The core C (due to Gillies [9] and Shapley) of an abstract game is defined

to be the set of undominated outcomes. I.e.

(2.4) C = X - Dom (X)

We can rewrite the definition of the core in terms of the relation accessible

as follows.

(2.5) C = {x e X : vy e X, y * x, we have y ~‘ x)

I.e., in the terminology of Markov chains, the core is the set of all absorbipg

outcomes. Note that each outcome in the core (if nonempty) is an equivalence

class by itself.

An elementary dynamic solution (elem. d-solution) of an abstract game is

a set S C X such that

(2.6) if x 6 S, y € X — S then ~~~ x, and

(2.7) if x,y € S, then x ÷ y and y ~ - x

It can easily be shown that

Proposition 2.2. An e].ezn. d—solution is an equivalence class.

The converse, however , is not always true. Condition (2.6) require S to

be (in the terminology of Markov chains) a non—transient (recurrent, persistent)

equivalence class.

The dynamic solution (d—solution) P of an abstract game is the union

of all distinct elezu. d—solutions. I.e.

(2.8) P = U {s C X S is an elem . d—solution} .

—3— 
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We have the following easy result.

Proposition 2.3. For all abstract games, C C P.

It is clear that the dynamic solution always exists and is unique . How-

ever, it may sometimes be empty . However , if X is a finite set, we have the

following two results.

Lenina 2.4. If X is a finite set, then P is the d-’solution if and only if

P satisfies

(2.9) Vx, y e P, y ÷ x iff x ~~ y

(2.10) If x € P, y 6 X - P , then y 9 x. And

(2.11) If y € X — P then ~x e P such that x ÷ y

Theorem 2.5. If X is a finite set, then the d-solution is always nonempty .

For proofs of these asser t ions and for a behavioral interpretation of the

dynamic solution, see Shenoy [21]. The dynamic solution has also been defined

independently by Kalai, Pazner and Schmeidle~ [11,12].

3. The Models •

We shall first introduce some notation and definitions. Let

N = {l,...,n} denote the set of players. Let r be an n-person cooperative

game (with side payments, without side payments or a game in partition func-

tion form). Let 2
N denote the set of all subsets (coalitions) of N and TI

denote the set of all partitions (coalition structures) of N. Let

En Er
~S ii 2 be a payoff solution concept, where 2 denotes the set of all

subsets of the n—dimensional Euclidean space E~ . Intuitively , given that the

players in N align themselves into coalitions in the c.s. P € II , we interpret

5(P) as the set of all likely disbursements of payoffs to players in N. E.g.

S may denote the individually rational payoffs, the core, a vN—M stable set,

the Shapley value, the bargaining set ~~~~ the kernel , the nucleolus or any

-4- p•H
~~~~~~~~~ ~~~~~~~~~~~~~~~~ _______ 
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other payoff solution concept that indicates disbursement of payof f s  as

solutions of an n-person cooperative game . For P € fl , S (P) may be

the empty set 0 (e.g. the core), or a single point in E’~ (e.g. the

Shapley value or the nucleolus) or a nonempty subset of E” (e.g. the

4 bargaining set or the kernel). If S(P) = 0 ( interpreting this

fact as players unable to reach an agreement on the disbursement of

payoffs when they are aligned into coalitions in P), then we will

assume for simplicity of exposition that P is not viable. Let U(S )

denote the set of all viable coalition structures with respect to the

payoff solution concept (p .s .c .)  S, i.e.,

(3.1) il (S) = (P e ii: 5(P) ~ 0).

Definition 3.1. A solution configuration with respect to p .s.c. S is

a pair (x ,P) such that x c  S(P) and P £ Il(S).

• A solution coPfiguration w.r.t. p.s.c. S represents a possible

outcome of the n-person cooperat ive game where S represents any

appr opriate payoff solution concept . Let SC(S) denote the set of all

solution configurations w.r t . p.s.c. S, i.e.

(3.2) Sc( S) = u ES(P) x { P} )
Pd (S) -

We now define a binary relation , dominat ion , on the set SC(S) as follows :

Definition 3.2. Let (x ,P1) and (y, P2 ) belong to SC(S). Then (x ,P1)

dominates (y, P2 ), denoted by (x ,P1) dom (y,P2) iff

( 3.3) ~ a noneutpty R e P1 such that x
1 > y~ for all I c R.

~~~- •• -~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -
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f Intuitively , if (x ,P1) dom (y , P
2

) ,  then the players in some coalition R

in c.s. P1 prefer P1 to P2 . We require the players in subset R to

be together in a coalition in c.s. P1 so that there is no conflict of P
interest between these player’s- preference .for P1 and their allegiance

to the other players in their coalition.

The dominance relation as defined above may be neither asymmetric

nor transitive. We now have an abstract game (SC(S),dom) where SC(S)

is the set of outcomes and dom is a binary relation on SC(S). For

this abstract game, we look at the core and the dynamic solution as

defined in Section 2.

Definition 3.3. Let r be an n-person cooperative garnet ~r.d S be a

p.s.c. The core of solution configurations w.r.t. p.s.c. S, denoted

by J0(S), is the core of the abstract game (SC(S),dom).

Definition 3..~~ Let F be an n-person cooperative game and S be a

p.s.c. The dynamic solution of solution configurations w.r.t. p.s.c.

S, denoted by .J
1
(S), is the dynamic solution of the abstract game

(SC(S) ,dom).

From Proposition 2.3, we obtain the following result.

Proposition 3.1. J0(S) c ~1(s) .

The core of arm abstract game is a very intuitive and plausible solu-

tion concept. However, for some games and for certain p.s.c., J0(S)

may be an empty set. In such cases, we can proceed to look at J1(S)

as a solution concept. If the p.s.c. S is such that S(P) is a unique

tIn this section, F denotes an n-person cooperative game with side pay-
ments, without side payments or a game in partition function form.

-6-
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point in E~ for each P 6 it(S) with H(S) � 0, then the set SC(S)

is finite and nonempty . By appealing to Theorem 2.5 , we conclude the

following result.

Proposition 3.2. Let r be an n-person cooperative game and S be a

p.s.c. such that ~(5) � 0 and assume that S(P) is a unique point in

En for each P 6 li(S). Then J1( S) � 0.

In another approach, we model just the set of all viable coalition

structures j~(5) as the outcomes of an abstract game. A domination

relation on H(S) is defined as follows.

Definition 3.5. Let 
~
‘1~ 

P2 € lI(S), 0 � R ~ 2N and S be a p.s.c.

Then P1 dominates P
2 via R w.r.t. p.s.c. S, denoted by

P1 domR(S) P2 , 1ff

(3.4) R € P
1 and

(3.5) for each y € S(P2), 3 an x € SO’1) such that x. > y. V i € R.

Intuitively, if P1 domR
(S) P2, then the players in subset R prefer

P1 to P2 because by Condition (3.5), no matter how the players disburse

the payoffs corresponding to c.s. P2, each player in R will do better

in c.s. P1. Condition (3.4) is imposed for the same reasons Condition

(3.3) is imposed in Definition 3.2.

• Definition 3.6. Let P1, P2 6 U(S) and S be a p.s.c. P1 dominates

w.r.t. S, denoted by P1 dom(S) P2, 1ff

(3.6) 2 a nonempty R € such that P1 dom
R
(S) P2 .

—7— Li
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I.
We now have another abstract game (fl(S),dom (S)) where Il(S) is th e

set of outcomes and dom(S) is the binary relation on I l ( S) .  Once again

we look at the core and the dynamic solution of this abstract game.

Definition 3.7. Let F be an n-person cooperative game and S be a

p.s.c.  The core of coalition structures w.r.t. p.s.c. 5, denoted by

is the core of the abstract game (ll(S),dom(S)).

Definition 3.8. Let F be an n-person cooperative game and S be a

p.s.c. The ~ynamic solution ~~ cc~aii~ ion structures w.r.t. p.s.c. S,

denoted by l(1(S), is the dynamic solution of the abstract game

(fl (S),dom(S)).

Once again, by appealing to Proposition 2.3, we have :

Proposition 3.3. K0
(S) c i(

1(S). 
- 

-

Also, since Il(S) is always finite, we have:

Proposition 3.4. 1(~(S) � 0.

The following results gives a comparison of the two models.

Theorem 3.5. Let F be an n-person cooperative game and S be a p.s .c .

Then we have

- 

1(
0(S) ~ 

(P € II: (x,P) c J0(S)).

Proof: Let P1 € (P € II: (x,P) € J
0
(S)). Then 3 x c S(P1) such that

(x ,P1) is undominated in SC(S ) which implies that P~ is undominated

(w. r . t .  S) in 11(S), i .e., P1 € I(
0(S). ~~

—8—
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Another consequence of the definitions of K0
(S) and J0

(S) is aà follows:

Theorem 3.6. Let F be an n-person cooperative game and S be a p .s.c.

such that V P € it , SO’) is either a single point set in En or an

empty set . Then

K0(S) (P € U: (x ,P) € J0(S)} and

J0(S) {( S(P ) P ) :  P €

If J0
(S) ~ 0, then the solution configuration model indicates both

coalition structures and distribution of payoffs among the players as

solutions in J0 (S) whereas the coalition structure model indicates only

coalition structures as solutions in K
0
(S). Also by Theorem 3.5 , J0

(S)

indicates fewer (or at most an equal number of)  coalition structures as

solutions compared to K0(S) .  However , if the p.s.c. S is such that

for each P € it -, SO’) is either a single point in E~ or an empty

• set, then the two models are identical (except in form) and indicate the

same results.

4.  Representation by Digraphs

Since the number of coalition structures Is finite, we can represent —

the abstract game (11(S),dom(S)) of a game on N by means of a directed

graph (or digraph). Given a payoff solution concept S, let D = D(S )

( be a digraph whose vertex set V(D) Il(S) and whose arc set A(D) is

given by -

(4 .1)  A ( D )  {(P 1,P2 ) € fl(S)xJI(S): 1’~ dom(S) P2
).

S 
____ - 

-9- 
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We call such a digraph D the domination digraph of the abstract game

(il(S),dom(S)).

Example 4.1. Let F be a 3-person game on (1,2 ,3). Let S be a p.s.c.

defined as follows :

Let 0 < a < b < c = d be real numbers such that c > a+b and

(0,0,0) if P ((1), (2), (3))

(O,a,O) if P = ((1,2), (3))
S(P) = 

-

(O,O,b) if P = ((1,3), (2))

((0, x2, c—x2
): a < x2 < c—b) - if P = ((1), (2 ,3)) or ((1,2 ,3))

To condense notation, we shall drop the braces around coalitions in coali-

-tion structures and , for example, denote ((11, (2,3)) by (l)(23).

Note that

(l)(23) dom(S) (l)(2)(3),

(1)(23) dom(S) (12)(3),

(l)(23) dom(S) (l3)(2).

The domination graph of the game F is shown in Figure 4.1.

Let (P1,P2) c A(D). Then we say P1 is adjacent to P2 and P
2

is adjacent from P
1
. The outdegree, od(P), for P € U(S ) is the

number of c.s.’s adjacent from it and the indegree, id(P), for

P c Il(S) is the number adjacent to it. Then, in terms of this

terminology, the core of the abstract game (TI(S),dom (S)) is given by

(4 .2 )  1(0(S) = 
(P € V ( D ) :  id(P) 0).

In Example 4.1, 1(o(S) = 
{(1)(23) ,  (123)) .

-10- 
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( 1)(2 )( 3)

( 12)(3) 

(ii~

’

~~~~~ 4 (1)(23)
Figure 4 .1. The domination digraph of game in Example 4.1. P

The converse digraph D’ of D has the same vertex set as D and

the arc (P1,
P
2
) € A(D ’)  <~~~ (P2 ,P1

) € A ( D ) .  Thus the converse of D

is obtained by reversing the direction of every arc in D. If D D(S)

is the domination digraph of the abstract game (fl(S) dom (S)), then we

call its converse D’ = D’(S) the transition digraph of the abstract

game (fl(S),dom(S)). The transition digraph of the game in Example 4.1

is shown in Figure 4.2.

( 1)(2 )( 3)

~~~~~~~~~~~~~~~~~~~~~~~~ •(l23) 
-

• (1)(23)

The transition digraph cf the game in Example 4.1.

• -~~~ -~~~~~~~~~~ _- -~~~~~ - - • -
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To def ine the dynamic solution in terms of the transition graph , we

need a few basic definitions from graph theory (Cf. Harary [10)). A

(directed) walk in a digraph is an alternating sequence of vertices and

arcs P
0
,e
1
,P1,. .. ,e ,P in which each arc e. is (P1_1,P1) . A

closed walk has the same first and last vertex. A path is a walk in

which all vertices are distinct; a cycle is a nontrivial closed walk

with all vertices distinct (except the first and the last) . If there is

a path from P1 to P2, then P2 is said to be accessible from P1.

A digraph is strongly connected or stro~~ if any two vertices are mutually

accessible. A strong component of a digr’aph is a maximal strong subgraph.

Let T1,T2
,... ,T be the strong components of D . The condensation

D* of D has the strong components of D as its vertices, with

an arc from T. to T. whenever there is at least one arc in D from H
1 3

a vertex of T . to a vertex of 1.. (See Figure 4 .3 . )  it follows from
1 3

the inaximality of strong components that the condensation D* of any

graph D has no cycles. Let D’(S) be the transition graph of the

-• abstract game (II(S),dom(S)) with strong components T1,T2,.. j~~.

D D* 

~~~~~~~~~~~~~~~~~

A digraph and its condensation .

—12— 
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Then the dynamic solution of the abstract game is given by

(4.3) I(
~
(S) = u (Ti : od(T~) = 0 in the condensation D’*}.

In Example 4.3 , )(
1(S) = ((1)(23), 

(123)).

5. Solutions with Respect to the Individually Rational Payoffs

In the next four sections, we will characterize the solutions of the

abstract games for the special case of games with side payments using various

payoff solution concepts.

A cooperative n-person g~~~ in characteristic function form with side

payments is a pair (N , v) where N = {1,..., n} denotes the set of players

(as stated before) and v is a nonnegative real-valued function defined

on the subsets of N which satisfies v(Ø) = 0 and v({i}) = 0 for
t

all i €  N.

The individually rational payoffs (i.r.p.) corresponding to coalition

structure P 
~ l’”~ ’~

’m~ 
€ II is the set

1(P) = {x e E1
~: 

) x , = v(P.) for all j = 1,...,ni and
ieP .

x . > v( i)  for t all i € N).

~This condition and the nonnegativity restriction on v causes no real loss
of generality since all the payoff solution concepts we consider are
invariant under strategic equivalence.
t To condense notation , we shorten expressions like v({i , j ,k})  to v( i jk)
and so on.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~:;~~~~::~~~~•. ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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When P = (N), I((N)) is also referred to as the set of imputations.

Since 1(P) is nonempty for all P c U, we have

11(I) Il.

A game (N,v) is said to be superadditive if

(5.1) R1 A R2 
= 0, R.~R2 

£ - v(R1) + v(R2) < v(R1 U R2
)

and strictly superadditive if strict inequality holds in Relation (5.1).

Define the worth of a coalition structure P in the game (N,v)

by

(5.2) w(P) ~ v(P.).
Pj

€I, :~

Let 
-

(5.3) - z = max w(P)
PETE

and define

(5.4) Ii (P c IT: w(P) z}.

If x € E~ and R c N, let x(R) denote ~ x~. Then we have the
i€ R

following theorem.

Theorem 5.1. Let r be an n-person cooperative game with side payments.

Then K0
(I) � 0. In particular, we have K0(I)

Proof. Let P1 = ~~~~~~~~~~~~ € n~ Suppose 3 P c IT such that

P dom (I) P1, i.e. 3 R E P such that P domR
(I) P1. Now we can

- -14- 
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write R = U (R n ~~ Pick y e 1(P1) such that y(R n P~) = v(P~)il 1 1

j f R n P~ � 0 for all I = 1,2 ,... ,m. Since P domR ( I )  P1,

3 x c 1(P) s.t. x. > y. for all I € R. I.e. v(R) = x(R) > y(R) =

~~ 
v(Pb . Pick P2 

€ U as follows. P2 {R} ii {P 1 — {p~~: P~ fl R � 0))
PinR�0 1 1

u (P~ — R; P~ n R � 0 1. Then w(P2) > w(P1), a contradictionT This

completes the proof. [J

The following example will show that, in general , we cannot make a stronger

statement than in the theorem above.

Example 5.1. Let . F be a 4-person game with

v(12) = v(34) = v(23) = 1, and v(R) = 0 for all other R C N.

Let P1 = (12)(3i~), P2 = (.lk)(23) and P3 = (1)(23) (4). w(P
1) 2,

w(P
2
) w(P

3
) = 1,. But T(

o
(I)  = (P

1. 
P
2. 

P
3
).

However, with a slight assumption, we can claim the following.

Theorem 5.2. Let F be an n-person game with side payments such that

(N) € II. Then I(
o(I)

Proof: From Theorem 5.1 we need prove only K
~
(I) c Jl~ . Let P 1 € IT

such that P1 1 II , i.e. w(P
1
) < z. Then (N) dom(I) P1. This is seen

as follows. Let x € 1(P1). Then x(N) = w(P1) 
< z. Define y so that

Yj = Xj + (z - w(P1))/n for all I e N. Then y € I({N)) and y1 
>

for al]. i cN .  0
1’

Corollary 5.3. Let r be a superadditive game . Then )(
o( I )  = U .

Furthermore , if F is strictly superadditive, then K0(I) ((N)).

I — -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • : ~~~~~~~~~~~~~~ ~•T~~~~• 
-

~~~ 

-- 

-- -•-
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• Proof: F superadditive ~o (N) £ lIi, 
and r strictly superadditive

—~~n2 = {(N)). U
For the solution configurations model, no general existence result is

possible as is illustrated by the following example:

Example 5.2. Let r = (N,v) be a 3-person game with

v(l2) = v(l3) = v(23) 2, v(l23) 2.5.

it can easily be shown that for this game J0
(I) = 0.

6. Solutions with Respect to the Core

Let (N,v) be a cooperative game with side payments. Then the core

of the game (N,v) corresponding to c.s. P € ~ is defined by

(6.1) Co(P) = ( x c  1(P): x(R) > v(R) for al]. R c 211)

The core corresponding to a particular c.s. may be empty. Hence in general

n(Co) � U. In fact, for some games the core corresponding to every c.s.

may be empty, i.e., lT(Co) = 0. A characterization of K0
(Co) and

J0(Co) is as follows.

Theorem 6.1. Let (N,v) be a cooperative game with side payments. Then,

K0
(Co) IT(Co) = {P: Co(P) 0).

Also

J0
(Co) SC(Co) u (Co(P)x(P)). -

•

PE H (Co)

-16—
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Proof: Let P1, P2 £ TI(Co). Suppose P1 
domR(Co ) P2 for some R c 

~

‘

Let y c Co(P2
). Then 3 x e Co(P1) s.t. Xj  > Yj for all i c R.

I.e. x(R) > y(R). But since R £ P1, x(R) = v(R). Hence y(R) ( v(R)

contradicting the fact that y Co(P2
). The proof of the second

assertion is similar to the first. 0
Corollary 6.2. Let (N,v) be a cooperative game with side payments.

Let S be a p.s.c. such that, for all P c 11, .S(P) c 1(P) , and

S(P) A Co(P) � 0 whenever Co(P) � 0. Then K0
(Co) c K0

(S) and

J0
(Co) c J0(S’ (as subsets of H).

In light of Theorem 6.1 we would like to characterize the coalition

structures with nonempty cores. The next two theorems along with a

known characterization of games with nonempty cores corresponding to

the grand coalition N accomplish this task.

Theorem 6.3. Let (N,v) be a cooperative game with side payments. If

ll(Co) � 0, then 1T(Co) = 1I~ .

Proof: Let e II(Co), and suppose P1 1 II. Then 3 P2 £ if such

that w(P2) > w(P
1). Let x c Co(P

1). Then x(R) > v(R) for all

R c N which implies that w(P1) = x(N) > w(P2) and this is a contradiction!
• Hence fl(Co) c f l .  •

Let P1 € II and assume P2 e lI(Co) 
c 11 . Let x E Co(P

2). Then

x(R) > v(R) for all R c N. If x(P) > v(P) for some R e P1 then

w(P ) x(N ) > w(P ), contradicting the fact that P £ II . Hence2 1 1. z

I •~~~ x(P) = v(P) for all P £ P1 > x € Co(P1) - P
1 € l l(Co). Therefore

ll(Co)~~~l T . 0 
-

- 
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Corollary 6.4. Let (N,v) be a game with side payments. Then for all

~‘1~ P2 c fl(Co), Co(P1
) = Co(P2).

Corollary 6.5. Let (N,v) be a game with side payments. If there is a

P c U5 such that Co(P) 0, then U(Co) = 0.

Given a game r = (N,v) define a game F = (N,v
~
) derived from F as

follows. -

if R N
-• (6.2) v (R) = (
- - i~ v(R) for all other U C N
• .

• • where z = max w(P).
P€ ii

When th e is more than one game under discussion , we shall denote the

sets Co(P), fl(Co) and l1~ by Co(P,F), fl(Co,F), and 11 (F),

respectively.

Theorem 6.6. Let I’ = (N ,v) be a game and be as in Relation

(6.2). Then if co(P ,r) ,f 0, Co(P,F) Co((N),F
~
).

Proof: From the definition of F~ it is clear that for P � (N)

Co (PF) = Co(P,F5
). From Theorem 6.3 we obtain lI(Co,F )  = R (F

~
).

Since (N) c fl
~
(I’
~
)
~ 

by Corollary 6.4. Co(P,F
~
) = Co((N),F

~
). Hence

the theorem follows. ( )

Games with nonempty cores corresponding to the grand coalition have

been characterizeà by Bondareva (4,5] and Shapley [19]. For the sake

of completeness we will repeat this characterization here.

A balanced set 8 is defined to be a collection of subsets U of

K with the property that there exist positive numbers V R € B

—18— 
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• called weights, such that for each i c N we have

- • 
(6.3)

- - . {RcB: icR)

A game (N,v) is called balanced iff

(6.4) 
• ~ 

6~v(R) < v(N)

- 

ReB

holds for every balanced set with weights 
~
6R1• The following theorem

was proved by Bondareva (4,5] and Shapley (19].

• Theorem 6.7. Let (N v) be a game. Then Co((N)) � 0 if and only

if the game is balanced.

Corollary 6.8. Let F = (N ,v) be a game. Then IL(Co,F) ~ 0 if and

only if the game (N ,v )  is balanced .

• 

. 
Proof: (Necessity): U(Co,F) � 0 - Co ((N ) ,(N ,v

~
)) � 0 (by Theorem 6.6)

• - (N,v )  is balanced (by Theorem 6.7).

(Sufficiency): If F5 
= (N,v5) is balanced ~~ Co((N),F ) � 0 (by

- Theorem 6.7). If (N) c lI (~) then F = F and we are finished.

Otherwise ~ P € 11
5

(F
5
) such that P � (N). Then, Co(P,F) co(P,r )  =

Co((N),F5) / 0. fJ -

Thus we have completely characterized K0(Co) and J0(Co) for all

games with side payments.

Example 6.1. (A game with no solution. See Lucas [13,14].)

-
- Let N = (1,2,3,4,5,6,7,8,9,10) and v be given by

— _______ 
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~

v(N) = 5, v(13579) = 4,

v(].2) = v(34) v(56) = v(78) = v(910) = 1,

v(3579) = v(l579) = v(].379) = 3, 
V

v(357) v(157) = v(137) = 2,

v(359-) = v(l59) v(l39) 2,

v(1479) = v(3679) v(5279) = 2, and

v(R) = 0 for all other R C N.

In this game z = 5, Il
~ 

((N), P1 
(l2)(3L~)(56)(78)(9 10)) and

Co((N)) Co(P
1
) (x: x(12) = x(34) = x(56) x(78) = x(910) = 1,

and x(13579) > ‘i). By Theorem 6.1,

K0(Co) = {(N),
P1
), and

J0
(Co) Co((N))x{(N),P1

}. - • I

7.- Solutions with Respect to the Shapley Value

Shapley [17] defined a unique value satisfying three axioms for all

n-person cooperative games with side payments. It was assumed that

the grand coalition would form. Later, Aumann and Dreze [2] generalized

the axioms to define the Shapley value for all coalition structures.

A permutation 
N 

of N is a one-one function from N onto

itself. For U c 2 , write ciR (cii: 1 c R). If v is a game on

K , define a game a*v on N by -

(7.1) (u*v)(R) = v(uR) for all R c 211

—20—
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Also, if v and u are games on N, define a game v+u on N by

• (7 .2)  (v+u )(R) = v(R) + u(R) for all R € 211.

— . Call a c.s. P = 
~~
i’•••’

~m~ 
invariant under a if áP~ = P~ for all

j  1,... ,in. Player i is null if v(R u (i)) = v(R) for a1l~ U € 2N

Let GM denote the set of all games with side payments on N. Since

we assume that for all games with side payments, v(0) = 0 and v(i) = 0

V i € N , G1
~ is a Euclidean space of dimension - (n i l) .

• Fi x N = (l ,...,n} and P = 
~~
i’•••’

~m~ 
€ 11. The Shapley value

• corresponding to c.s. P is a function •p from (1~ to E1
~ i.e. a

function that associates with each game a payoff vector satisfying the

following axioms :

A.l (Relative Eff iciency ): •~ (v)(P~ ) = v(P~) for all j = 1,... ,m.

A.2 (Symmetry): For all permutations ci of N under which P is

invariant,

•~ (cs*v)(R) •p(v)(uR) .

A. 3 (Additivity) : $p(v+u) •p(v) +

A .4 (N ull Player Axiom ): If i is a null player , then •p(v)( i) 0.

When P = (N), the above axioms are equivalent to Shapley ’s axiom which

specify a unique value •(v) 
~~~~~~~~~~~~~~ 

given by

(7.3) • ~~~ = 

~ N (v)(i) = ~ (r-1)Un-r)! (v(R) - v(R - (U))
RcN

where r IR 1, the cardinality of coalition R. For each R c 211,

denote by v (R the game on R defined for all T c R by

L... 
________________________ _________________________________________
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(7•4) (vI g)(T) = v( T ) .  -

Theorem 7.1. Fix N and P = 
~~1’•••’~m~

• Then there is a unique

value and it is given for all j = 1,...,m and i c P~ by

(7.5) ($pv)(i) = ($(~~)(vI P~))(i).

Proof: See Aumann and Dreze [2 , pp. 220-221).

Since ,(p)t is nonempty for all P £ 11, Ti(s) 11. Also note from

(7.3) that if v is superadditive, then O(P)(i) > 0 and hence

•(P) £ 1(P). Also, since •(P) consists of a unique outcome for all

P c II , by Theorem 3.6 the s.c. model and the c.s. model give identical

results. For convenience, all the results in this section are stated only

for the c.s. model. 
- 

-

- A, partial existence theorem for K0
(~) is as follows:

Theorem 7.2. Let F be an n-person game in which the only coalitions

with positive values are all the (n-1)-person and n-person coalitions.

Then K0($) / 0.

Proof: Let us denote the game as follows:
- 

- 

- 

. 

I I
v(i) 0 for all i c N ,

v(N - (i)) = a1 for all I e N,

v(N) = b, and v(R) 0 for all other U c N.

tWhen there is no doubt about the game v under consideration, we shall
denote •p(v) by •(P) which is consistent with the previous section.
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We can assume (by relabelling of the players) that

(7.6) a < a  < ... < a .1— 2— — n

• n
Let a = ~ a1 and 11a (P c II: w(P) = an). Using (7.3) and (7.5)

i=l n
we have

(7.7) •((N))(i) = ((n-l)b + a - n~aj / (n (n - l) ) .

By (7.6) we have

(7.8) •((N))(l) > $((N))(2) > ...

Also,

(a1
/(n_l) for j = 1, . . .  ,n

(7.9) •((N—i)(i))(j) � 1.

- for j~~~ i

• Clearly , the only c.s. ’s we need 1oo~k at are (N)  and (N — i ) ( i )  for

i = 1,... ,n. All the c.s.’s not in 11a~ 
(except (N)) are dominated

by c.s.’s in 11a 
From Expressions (7.7), (7.8) and (7.9 )  it follows

n
that (N) dom(~) (N-n)(n) iff 

•

I 

• 

$((N))(n—l) > •((N-n)(n))(n-l)

-23-
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i.e. iff 
-

b > (n(a~ + a~~1
) - a)/(n-l).

Also if a~ = a~_1 (i.e. (N - (n-l))(n-1) c i f )  then

(N) dom (O) (N — (n—l))(n—1)

- 

- 1ff

> I((N — (n—1))(n—l))(n),

I 

i.e. iff

1 b > (n(a~ + a 1
) - a)J(n-l).I;

I ’

Now,

(N—n)(n) doin(~) (N)

-

‘ - 
1ff -

> •((N))(l) ,

i.e. 1ff

b < (n(a~ + a1) - a)/(n-l).

Hence we have

—24 — 
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I
- (N) If b > 

~~~~ 
+ a~~1

) - a)/(n-1 )

K0(4) = ~~ if b < (n(a~ + a1) - a)/(n- 1)

L~ (N) u 11 otherwise . -

a
U

Corollary 7 .3 .  Let r be a 3-person game with side payments . Then

- 
- -

In general, this is the strongest existence result we can obtain . I .e .

is a k-person game for which K0
(I) = 0. This is shown in Example

If Co(P) � 0, •(P) may not belong to Co(P). Hence Corollary 6.2.

is not applicable for the Shapley value • The following example illustrates

• 
- 

• this fact .

Example 7.1. Let N = (1,2 ,3) and v be given by v(l) = v (2)  = v (3)  = 0,

- j v(l2 ) 50 , v(13) = 50, v(23) = 56, and v( 123) = 80. Then the Shapley -

value is given by: 
-

(24 67, 27.67, 27.67) if P = (123)

(0, 28 , 28) if P = (l)(23)

4(P ) = (25, 0, 25) if P = (l3)(2)

(25 , 25 , 0) if P = (12)(3) -

(0 , 0 , 0) if P =

• 
. Note that Co(( 123)) = Conv ((20 , 30 , 30), ( 24 , 26 , 30), (24 , 30 , 26))

but •( ( 123))  I Co((l23)). The transition digraph is shown in Figure 7.1

and hence 1(o(4) = 1(
1

(4) = ( l ) (23) .  
-

-25-
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(12)(3)~~~~~~~~~~~~~~~~~~~~~~~~~ (123)

(l3)(2) (l)(23)

Figure 7. 1. The transition digraph for Example 7.1 .

The above example illustrates a weakness of the Shapley value in that

the Shapley value is derived entirely from the characteristic function

rather than the bargaining positions of the players in the process of

coalit ion formation . However , the Shapley value has been extensively

used as an a priori measure of power of players in “simple” games. Hence

the study of K0(4) and K1(4) is most appropriate for simple games .

- The class of all simple games forms a subclass of the class of all

cooperative games with side payments. A simple game is a game in which

every coalition has value either 1 or 0. A coalition ft C N is winnir~g

if v(R) 1 and losing if v(R) = 0. A simple game can be represented

by a pair (N ,W) where N is the set of players and W is the set of

winning coalitions. A simple game is monotonic 1ff R € W and

T D U —> T c W, and superadditive (or proper) iff U £ W ~ > N - R I W .

Superadditivity implies monotonicity in simple games. A winning coali-

tion R is called minimal ~~~~~~ if every proper subset of R is losing.

A monotonic simple game can be represented by the pair (N,WTh) where (Urn

is the set of all. minimal winning coal$tions. If (U” = ((i i) , then =
player i is said to be a dictator. If j € ~~~ / •, then player j

—26—
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is said to be -a veto player. If k j ~W
m then player - k is said to be a

dummy. Dummies play no active role iti the game and for all practical

purposes can be omitted from the set of players. A weighted majority game

is a monotonic simple game that can be represented by -

(7.10) (q: ~~~~~~~~~~~

where q > 0 is called the g~ota, a1 > 0, 1 = 1,... ,n is the weight

of the ~~ player, and ft £ (U < >  a. > q. Expression (7.10) is said to
ieR 1

be a weighted majority representation of the simple game. Two weighted

majority representations are said to be equivalent if they represent the

same simple game. E.g. (2; 1,1,1] and [5; 2,3,41 are equivalent since

both represent the game ((1,2,3), (U” = ((12), (13), (23))). Not every H

monotonic simple game may have a weighted majority representation (see Shapley ~8J).

Example 7.2. The most common of all simple games is the straight majority

game 14,,, n odd, in which

(U”‘ = (ft C N: IRI = (n+1)/2}

where I~
[ denotes the cardinality of coalition R. The Shapley value

is given by

(1/IRI if i € R € W , R € P

•(P)( i) = .~
L 0 otherwise .

It is clear that

—27— 
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K~(4) = (P~€ i f :  P contains a minimal winning coalition) .

The pure ~~~~~~ ~~~~~~~~~~ B,, is given by ~ m 
= ( ( N ) )

The Shapley value is given by

(1/n if P= (N)
•(P)(i) -

0 
- otherwise 

-

clearly, 
~~~~ ~~~~ 

= ((N)).

Example 7.4. Let r be a proper game with a dictator. Then

if i is a dictator
• - •(P)(i) =

(...0 otherwise.

Hence = 

~~~~ 
= 11. Note that every player who is not a dictator is

a dumay. So essentially we have a 1-person game in which the only player

is winning by himself.

Example 7.5. Consider the weighted majority game (3; 2,1,1,1). The

minimal winning coalitions are Wm 
= ((12), (13), (14), (234 )) .  The

Shapley value is given by

-28- 
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- ‘(1/2, 1/6 , 1/6 , 1/6) if P = (1234 ) -

• (2/3 , 1/6, 1/6 , 0) if P (123)(’e)

(2/3 , 1/6 , 0 , 1/6) if P = (124)(3)

(2/3 , 0 , 1/6 , 1/6) if P (l34)(2)

$(P) = s  (1/2 , 1/2 , 0 , 0) j f P = (12)(34 ) or ( 12)(3)(*e )

(1/2, 0 , 1/2 , 0) if P = (13)(24) or (13)(2-)(’e )

(1/2 , 0 , 0 , 1/2) if P = (14)(23) Or ( 14)(2)(3)
- (0, 1/3, 1/3, 1/3) if P = (1)(234 )

t -

~(0, 0, 0, 0) otherwise.

The transition digraph of the game is shown in Figure 7.2. Since all c.s.’s

that contain only losing coalitions are dominated, these are omitted from

* • 
this transition digraph. Note that 

~~~~ ~ 
0. However,

-
~

it
— ~~1)(23k), (12)(3)( 4), (l2)(3’e), (l34)(2), (13)(24)

• 
- 

- (la)(2)(4), (l24)(3), (14)(23), (14)(2)(3), (123)(4)).

A closer look at the Shapley value for different c.s.’s in Example 7.5

reveals the following observation. If players 1 and 2 who are in a w~nning

coalition with 3 in the c.s. (l23)(4) decide to expel player 3 from the

coalition and form the smaller winning coalition (12), one would expect

both players not to decrease their power in the smaller winning coalition

(12) since there are fewer players to share the same amount of power. L
However , player 1 actually does decrease his power from 2/3 to 1/2.

We shall cal.]. this phenomenon the p~~adox of smaller coalit ions. To under-

stand why this phenomenon occurs, let us look at Theorem 7.1. It states

—29—
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- Tj :H
- (12)(34 )

(1.2)(3)(4) (l34)(2)

( l24)(3

(1234 )
l)(234 )

(l3)(24) -

(l3)(2)(4)

(12 )(k )  ( 14)(23)
(l4)(2)(3)

Figure 7.2. The transition digraph in Example 7.5.

that given a c.s. = 

~~l’ ”’~m~ 
the Shapley value of player i in

coalition depends only on the subgame v I P 1. I.e. the Shapley

value of a player in a coalition is oblivious of the presence of other

players not in the coalition for bargaining purposes. We shall regard

this phenomenon as a “flaw” in the properties of the Shapley value . To

make the above discussion more formal, let F (N ,W) be a simple

game and a be a payoff value concept (i.e. for all games and for

each P c 11, 0(P) is a single point in E~, where n = the number of

players). We say F does not exhibit the paradox of smaller coalitions

w.r.t. payoff value concept a if f the following holds : •

Let P1, P2 c U such that ~1’ € ~~~ 
~kl C ~k

is such that 
~kl 

€ W~ and 
~kl C P2 . Then

o(P2 )( i) > a(P1
)(i) for all i ~ P~~.

-.
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The following result is a consequence of the above definition .

Theorem 7.4. Let r be a proper simple game that does not exhibit the

paradox of smaller coalitions w.r.t. 4. Then K
0
($) � 0.

Proof: Let T c such that I T I  ~~. IRI for all R e Let P € U

be such that T c P. Then •(P)(i) = 1/IT I for all i € T. Suppose

j  P1 € U such that P1 domR
(4) P for some R c P1, i.e., •(P1)( i ) >

•(P)(i) for all i c R. Let R ’ be any minimal winning coalition con-

tained in R, i.e. U’ c U and ft’ £ Let P2 € 11 be such that

U’ € P2 . Then since I does not exhibit the paradox, •(P2)(i) >

for all i c R ’ . Also

(l/)R’I if 1 €
• 

- 
•(P2)(i)

otherwise.

- Since F is proper, R’ A T � 0. Hence for all I £ R’ n T, .

1/IR’) = •(P2
)(i) > 4(P1

)( i) > •(P)(i)  l/~T~ , which is a contradiction

(since I R ’ I  > I T I ) !  [J

Let

(7.11) t = mm I~~~ I

REWm 
-

and let

(7.12) = (P £ 11: P contains a winning coalition of size t) .

Then we obtain the following .
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Corollary 7.5. Let F be a proper simple game that does not exhibit the

paradox of smaller coalitions w.r . t .  4 . Then K0
(~~)

That in general we cannot strengthen the above result is shown by

the following example . -

Example 7.6. Let r be a 4-person game represented by (4 ; 2 ,2 ,1,1].

The minimal winning coalitions are ((12), (134), (234)). The Shapley

value is given by

(1/2 , 1/2 , 0 , 0) if P = (l2)(34) or ( l2) (3) (4 )

(1/2, 1/2, 0, 0) if P = (123)(4) or (].2’e)(3)

•(P) = (1/3, 0, 1/3, 1/3) if P = (134)(2)

(0, 1/3, 1/3, 1/3) if P = (l)(234)

(1/3 , 1/3 , 1/6 , 1/6) if P = (1234) . -

~

Note that the game does not exhibit the paradox of smaller coalitions .

Also t 2 , and fl .~ ( ( l 2) ( 3 ) (4 ) ,  (12)(34)} . However ,

K0(4 )  = {(12)(3)(4) (12)(34), (123)(4), (l24)(3)}. Observe that

players 3 and 4 are dummies in the subgame on (1,2 ,3) and (1,2 ,4) - 
-

• respectively. ‘ I

An interesting problem raised by Theorem 7.4 is to characterize

• the class of games that do not exhibit the paradox of smaller coalitions

w.r.t.  4 . Let us look at symmetric games . A game (N ,v) is called

symmetric if the value of a coalition depends only on the size of the

coalition . A symmetric monotonic simple game is of the t ’l e Mn ,k = (N,W) 
- 

-

• 
- —32—
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where (U : (R c N: I R I  > k) .  The following proposition follows

from the symmetry axiom of the Shapley value .

Proposition 7.6. Let F be a symmetr ic simple game . Then F does

not exhibit the paradox of smaller coalitions w.r .t .  0 . In fact ,

K
o
($) 11

~
.

Proof: The Shapley value is given by

(l/ I RI if i c U c P and U £

•(P)(i) =

Lo otherwise.

• Hence the result follows from Statement - (7.5). EJ

Since Example 7.6 does not exhibit the paradox and is not symmetric,

Proposition 7.6 is not a complete characterization. A list of all proper

simple games with four or fewer players is given in the appendix along with

the Shapley value 4 corresponding to all coalition structures ,

and whether or not the game exhibits the paradox .

Another interesting problem is to determine, if possible, a power

index that has all the desirable properties of the Shapley value but that

does not exhibit the paradox of smaller coalitions .

The most critical axiom of the Aumann-Dreze generalizat ion of the

Shapley value is A.3 .

~~.!.
. •p(Vfu ) = •p(v) + •p(U).

This axiom is acceptable if and only if we assume that the c.s. P is fixed

- 
_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and that players in a coalition C P cannot bargain on the basis of the

values of coalitions not contained in This assumption is not appro-

priate for our model where the players are bargaining for a coalition

structure and no c.s. is fixed.

Another generalization of the Shapley value (which he defined only for

the grand coalition) to the case of all coalition structures which is

appropriate for monotonic simple games is as follows.

(1.) The Shapley value corresponding to the grand coalition is

• used as an a priori measure of power of the- players. This t

is suggested by Shapley and Shubik [20 3.

- (ii) And within any coalition in a c.s., a player can expect to
- 

share in the payoff proportional to his power as defined in H

(I). This is suggested by Gamson (8).

Assumptions (i) and (ii) define a unique value for all monotonic simple

games which we denote by 4’. We can define 0’ by axioms as follows:

The (generalized) Shapley value 4’ is a function from II x

to E~, i.e.,- a function that associates with each game and a c.s. a

-payoff vector satisfying the following axioms:

A’.]. (Relative Efficiency): 0’(P,v)(P
k
) = v(P

k
) for all E P, and

all. P € ii.

A ’.2 (Symmetry ): For all P £ II , and all permutations a of N under

which P is invariant,

•‘(P,u*v)(R) $‘(P,v)(aR) for all R C N.

—34—
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A’ .3 (Additivity ): If v and u are games in GN, then

•‘((N),v+u) = 0’(OL),v) + •‘((N),u) — I

A’.4 (Null Player Axiom): If i is a null player, then 
-

•

H 
- 

•‘(P,v)(i) = 0 for all P € ii.

A’ .5 (Proportionality): For all P £ II,

• ‘( P ,v)(i) . •‘((N),v)(j) ~‘(P,v)(j) 
.

for all i,j ~ ~k 
£ P.

When P = (N), Axioms A ’.l-A’ .’+ are equivalent to Shapley’s axioms

which specify the unique value given by Expression (7.3). Denote

•‘((N),v) by •(v) = (4
~
(v),. . .,+ (v)). (Since 0’((N),v) =

our notation is consistent.) Next we obtain the following result .

Theorem 7.7. Fix N = (1,... ,n} and let denote the set of all

monotonic games on N. Then there is a unique value satisfying Axioms

A’ .l-A’ .5 given by Expression (7.3) and

• v(P ) where P e P is such that} •.(v) k k
- 

. ~k e P~, if j is not a null player
(7.13) •‘(P,v)(j) =

0 if j is a null player

Ii
-35-
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Proof: It can be easily shown that Statements (7.3) and (7.13) satisfy

Axioms A ’ .l-A ’.S. Uniqueness follows from Axioms A’ .l and A ’.5. 0
Corollary 1.8. Let F be a monotohic simple game. Then F does not

exhibit the paradox of smaller coalitions w.r.t. 0’.

Proof: This follows from Expression (7.13).

In view of Corollary 7.5, we might be tempted to assert that

~ 
!I
~
• However, the following example shows that it is not true.

Example 7.7. Consider the weighted majority game given in Example 7.5

L3; 2,1,1,1]. Then 0’ • is given by

1/6, 1/6, 1/ 6) if P (1234)

1 (3/5 , 1/5, 1/5, 0) if P (123)( 4)
•‘(P) =~~~

- 1 ~~~~ 1/4, 0, 0) if P ( 12)( 3)( 4) or ( 12)( 34)

1/3, 1/3, 1/3) if P (l)(234).

Fox’ all other c.s. ’s, •‘(P) can be determined by the symmetry of players

2 , 3, and 4. It is clear -that Ko(0’) = {(l)(234)). Note that in this

example t = 2 , hence (l)(234) I

Let
• •

(7.14) 8 = n&in Z •i(v), 
•

i€R

tWhen there is no doubt about the game v under consideration , we shall
denote •‘(P ,v) by •‘ ( P) which is consistent with the established
notation. -

-36-
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and let

(7. 15) 115 = (P e TI: P contains a coalition R• such that 
~ 

•j
(V) = s}.

- 

Then we have the following important fact.

Theorem 7.9. Let r be a proper simple game. Then K0(4”) = 11.

Proof : Denote •‘((N)) by 4 = 
~~~~ 

~~~~~~~~~~~~~ Let P1 e II. Suppose

TI such that P2 dom~(0’) P1 for some R £ P2 such that U e P.

Then •‘(P2)(i) > •‘(P1
)(i) for all i £ R. Let T £ P1 be such that

T e W
m and 

~ 
s. Since r is proper R n T � 0. Pick j c R n T.-

i€T

Then •‘(P1
)(j) = 4./s. Since j £ R, •‘(P2 ) (j )  = •./( ~ •.) > •./s ,

3 3 iER~~~
i.e., ~ 4 . < s, a contrad-iction! Hence K

0(4”
) D JIG.i€R ~ •

Let P € II and P c 11 be such that P 1 II . Then] s 2 2 5

P1 dom~ (0 ’)  
~
‘2 where T c P1 such that T c Wm and 

•~~ 
4.  = s because

- 
iCT

= 4./s for all ~ ~ T and •‘(P2)(i) < 4./s for all i e T.

Hence K0(4’) 
c 115

; 0

8. Solutions with Respect to the Bargaining Set

The bargaining set was first introduced by Aumann and Maschler (3].

They defined several types of bargaining sets. One of these, denoted by

was shown to be noneinpty for every c.s. by Peleg (161. 
-

Let denote a vector in EZ~ where r = IR I , whose elements are

indexed by the players in R. Let x £ 1(P) and let i and j  be two

distinct players in coalition 
~k 

€ P. An obj ection of i against j to

x c 1(P) is a vector ~R where R is a coalition containing player i

—37—
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• ;
but not j ,  whose coordinates ~~ satisfy 

~i > x~, y~, > x
~ V £ E U

and 
~ 

y
~ 

= v(R). A counter-objection to this objection is a vector

D £CR
z , where D is a coalition containing player j  but not i, whose

coordinates z~ satisfy z
~ ‘ 

x~ for each £ E D, z~ > for each

I. E R fl D, and 
£~D 

~ 
= v(D).

-
• x € 1(P) is stable if for each objection to x, there is a counter-

• objection. The bargaining set corresponding to the c.s. P € 11, denoted

by 4i)(p) is the set of all stable individually rational payoff

x £ 1(P), i.e.,

(8.1) M~~ ’(P) {x € 1(P): x is stable).

Theorem 8.1. Let F be an n-person cooperative game with side payments .

Then M~
1
~(P) � 0 for each P € Ti.

Proof. See Davis and Maschler ( 7  1 and Peleg (16].

As a result ll(M~!~ ) = if. The bargaining set is a natural payoff s~1ution

concept to study the solutions J0 and K0 for the following reasons:

(i) the bargaining set for each c.s. consists of payoffs that

are stable in the sense of objections and counter-objections.

If for a particular c.s., a payoff is not in the bargaining

set, some player would have a justified objection (an

objection that has no counter-objection) which when carried

out would result in breakup of the coalition structure.

Hence we are not justified in using unstable payoffs

corresponding to a c.s. to dominate another c,s. Also,

(ii) the bargaining set is nonempty for each coalition structure. I -

- • —38— • 
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We shall now determine K
0(I4~~

) for all 3-person games with side

payments.

Consider the 3-person game given by N (i.,2,3},

v(1) = v(2) = v(3) = 0, v(l2) = a, v(l3) = b, v(23) = c,
(8.2)

and v(123) = d , where 0 < a b c c and d ‘ 0.

Theorem 8.2. Let F be a 3-person game as in (8.2) with d ~ (a+b+c)/2.

(i) If d < c, then X 0 (M~’~) {(1)(23))

(ii) If d = c, then 
• 

K0(M~’~) {(1)(23), (123))

(iii) If d > c , then K0(M~’~ ) = ((123)).

Proof: (i) In this case we have (a+b)/2 + c12 < d < c/2 + c/2, hence

a+b < c. The bargaining set is given by

(o, 0, 0) if P = ( l )(2) (3) ,

(0, a, 0) if P = (12)(3),

(8.3) M~~~(P) = (0, 0, b) 
- 

if P = (l3)(2),

Conv((0, c—b , b), (0, a, c—a)) if P = (1)(23),

(0, d12 — (b-a)/2 , d12 + (b—a)/2) if P = (123 )

Clearly (1)(23) dom(M~~~) (l2)(3) and (l)(23) dom(?4’~) (l3)(2).

• Also since (0, c/2 — (b—a)/2, c/2 t (b—a)/2) c 4’~((l)(23)) and

c > d, (1)(23) doin(41~) (123). The transition graph is shown in

Figure 8.1. Hence Case (i) follows.

—39—
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(ii) In this case, the bargaining set is as in (8.3) except for

c.s. (123) which is

M~~~((l23)) = M~~~((l)(23)) .

Therefore (ii) follows. (See Figure 8. 2.)

(iii) Case 1) c > a+b

Here the bargaining set is as in (8.3) - except for c.s. (123)

which is given by 
-

N~~~((123)) = {(x1,x2,x3): x1 + x2 > a, x1 + x3 > b, x2 t x3 
> c, and

x1 i- x 2 +x 3
d}.

For each (0, x2, c-x2) £ M~~~((1)(23)) where a < x2 < c-b, we have

((d—c)/3 , x2 + (d—c)/3 , c—x2 
+ (d—c)/3) £ £4’~((123)). Hence

(123) dom(M~
1
~) (1)(23). The transition digraph is shown in Figure 8.3.

(iii) Case 2) c < a+b

In this case the bargaining set is given by

- ~(O , 0, 0) if P = (l)(2)(3),

(p1, p2~ 
0) if P = (12)(3), -

(8.4) M~~ (P) = (p
1, 0, p3

) if P = (13)(2),

(0, p2, p3
) if P = (1)(23),

.Co((123)) if P = (123).

—40—
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( l)( 2)(3 )
- 

- 

(l2)( :~~~~~~~~~~~~~~~~~~~
/U2

3)

Figure 8.1. The transition digraph in Theorem 8.2, (i).

(].)(2)(3)

(l2)(3)
•(123)

- (l3)(2~ 
(l)(23)

- Figure 8.2. The transition digraph in Theorem 8.2, (ii) .

(l)(2)(3) 
-

: 

(12X3 > .~~~~~~~~~~~~~~~~~~~~~~~~ (:23) 
-

~~~~~~~~~~~~~~~~~~~~~~~ The transition digraph in Theorem 8.2, (iii) case 1). •

—41 —

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - - -~~~~~~~~~ ~
_ij___ _

~
_ 

_______



— ---,- -- -
~ 

— 
~~~~~~~ ~~- —~

- --- .—
~~~~~~~ ~~~~. _______________________

- -

- --- --- ~~~~~~~~~~~~~~~~

where p1 = (a+b-c)/2 , p 2 = (a+c-b)/2 , p 3 
= (b+c-a)/2 , and 

J I

Co(( 123)) = {(x
1 x2,x3): x1 + x2 

> a, x1 + x~ > b, x2 + x3 > c,

and x1
+x 2 + x

3
d}.

Let p = (p1 + p
2 
+ p3), then clearly ,

+ (d-p)/3 , p2 + (d-p)/3, p
3 

+ (d-p)/3 ) c M~’~ (( l23 ) )

Hence c.s. (123) dominates (w .r . t .  M~’~) every other c.s. This

case completes the proof of the theorem . 0

Theorem 8.3. Let F be a 3-person game as in (8.2) with d = (a+b+c)/2.

(i) If c < a+b then K0041
) ) = {( 12)(3) , ( l3 ) (2) ,  ( l ) (23 ) ,  (123)) .

(ii) If c > a+b then K0(M~~~
) = {(l)(23)} .

Proof: (i) In this case, the bargaining set is as in (8.4) with

h4i~((l23)) = (p1, ~~~ 
p3). The result clearly follows .

(ii) In this case , the bargaining set is as in (8.3). Since

d c c , the result follows . 0 •

Theorem p.4. Let F be a 3—person game as in (8 .2) , .  with d < Ca+b+c)/2.

(i) If c < a+b then x0(M~
1
~

) = ((l2)(3) ,  ( l3)(2) ,  ( 1)(23)) .

(ii) If c > ath then K0(*4’~
) ((1)(23)}.

Proof: Ci) In this case, the bargaining set is as in (8.4) except for

c.s. (123) for which it is given by

—42—
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~ k- (p
1 
+ (d-p)/3 , 

~2 
+ (d-p)/3 , p

3 
t (d—p)/3)

- 
- if 2c-a-b < d

(8.5) g~i)((123)) = (0, d/2 — (b-a)/2 , d/2 + (b—a)/2)

if b-a < d < 2c-a-b

(0 , 0, d) if d < b—a .

In all cases, the transition graph is presented in Figure 8.4. Therefore

Ci) follows.

(ii) In this case the bargaining set is as in (8.3) except for

c.s. (123) for which the bargaining set is as in (8.5). The transi-

tion graph is shown in Figure 8.5. Hence the result follows. 0

- 
( l ) (2 ) (3 )

- 

(l2)(3) (123) 

-

( 13)(2) (1)( 23) -

!~sure 8.4. The transition graph in Theorem 8.4 , C i) . 
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1’ -

~

(l)(2)(3) 

- F

(l2)(3)~~~~~~~~~~~~~~~~~~~~~~~~~ (l23)

Figure 8.5. The transition graph in Theorem 8.4 (ii).

Since Theorems 2.2 , 8.3 and 8.4 cover all cases, we have proved

the following.

‘ Theorem 8.5. Let F be a 3-person game as in (8.2). Then

K0(41~) � 0. -

For every P € U , if x € 1(P) belongs to Co(P), then no player can

have an objection against another player . Thus if Co(P) / 0,

Co(P) c ,41)p, . Hence the p .s.c. satisfies the hypothesis of

Corollary 6.2. So we obtain the following.

Lame 8.6. Let F be an n-person game . If U CCo ) � 0 then

$ 0. In fact K0(M~~~ ) ~ U .  
-

Proof: This is a consequence of Corollary 6.2 and Theorem 6.3. - 0
No general existence theorem for ~

0
(g~i)) is known at this time.

Example 8.1 illustrates a pathology for K0(N~
1
~ ) which is due to

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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a “flaw” in the properties of the bargaining set .

Example 8.1. Let F be a 5-person game with

v(12 ) = 10, v(35) 85, v(l34) 148, v(23te5) = 160, and

v(R) = 0 for all other R c N.

• A simple computation reveals that the bargaining ~iet is given by

‘(0, 10, 0, 0, 0) if P = ( 12)(3)(4)(5) , ( 12)(3)(45) ,

(12)(3is5) or (l2)(34)(5) ,

(0 , 0, 85, 0, 0) if P = ( 1)(2)(35)(k) , (l4)(35)(2) ,

(l2’i)(35) or (l)(24)(35),
g(i)(p) ~ 

-

1. (0, 0, 148, 0, 0) if P = (134)(2)(5) or’ (134)(25),

(0, 10 < x
2 

< 12, 160— x2 , 0, 0)t if P = (l)(2345),

(0, 10, 85, 0, 0) if P = (l2)(35)(4) ,

(0, 0, 0, 0, 0) for all other P € U .

Note that in every c.s. that contains a coalition which has a positive

value , at least one player in the coalition gets zero payoff in the

bargaining set. As a result, due to Condition 0.5) in the definition of

domination, no c.s. dominates another c.s. Hence K0
(N~~~) U.

The above example exhibits a flaw in the properties of the bargaining

set. E.g., in the c.s. (12)(35)(le ) player 5 gets zero payoff in the

tDenotes th. set ((0, x2, 160—x2, 0, 0): l 0< x 2 12).

—45—
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bargaining set. This is because player 5 has no ‘bargaining power’ at

au vis-~--vis player 3. Since there are no coalitions with a positive

Value that contains player 5 but not player 3~, player 5 cannot even

object! However the payoff in the bargaining is counter-intuitive

because we could argue : Why should player 5 enter into a coalition with

player 3 if his share of the resulting coalitional value is the same as

what the player could have obtained had he been in a coalition by himself?

In this respect, we could say that the bargaining set is derived entirely

from the bargaining positions of the players in the process of coalition

• formation in contrast with the Shapley value which is derived entirely P
from the characteristic function of the game. These two p.s.c.’s reflect 

-

two extreme view points in looking at solutions of cooperative games in

characteristic function form. A major research problem is to define a

p.s.c. that exhibits both the strategic value and the bargaining power of

the players.

One method of attacking this problem in the case of the bargaining

set is to regard the bargaining set as an idealization (of the bargaining

process) and relax the definition of an objection by c, where c is a

small positive real number. More formally, let x £ 1(P) and i and

j be two distinct players in a coalition c P. An c-objection of

i. against j is a vector ~R, where R is a coalition containing player

i but not j, whose coordinates y
~ 

satisfy Yj  > + c Y~ ~

for all & c R ,- and ~ y
~ 

v(R). A counter-objection to this

c-objection i. defined as before. We say x £ 1(P) is c-stable if for

each c-objection in x, there is a counter-objection. The c-~~~~~ ni~~

set, denoted by ~~~~ corresponding to c.s. P c 11 is the set of all

c—stable x c 1(P), i.e.,

~~~~~~~~~~~~~~~~~~~~~
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(8.6) M’~~(P) = (x c 1(P): x is c-stable) .
- •  l,c

We could regard c as a ‘sacrifice’ each player is willing to make (if

- 
- necessary) for coalitional stability.

- Note that the results in Theorems 8.2, 8.3, 8.4 and 8.5 as well

as Leiina 8.6 remain unchanged if we replace by ~~~~.1.

Example 8.2. Consider the game in Example 8.1. The c-bargaining set

is given by 
-

(O < x
1

< c , lO—x1, 0, 0, 0) if P = (12)(3)(4)(5),

- (12)(3)( 45), (l2)(345) or (12)(34)(5),

- 
(0, 0, 85—x5, 0, 0 < x 5 

-c c) if P = (1)(2)(35)( 4),
- 

(lLe)(2)(35), (l24)(35) or (1)(24)(35),

• (0 < x < c , l0—x , 85—x , 0, 0 < x < c) if P = (l2)(35)( 4) ,
. M~~~(P) = . — 1 — 1 5 — 5 —

-

I • 

(0 < x1 < c , 0, l48~x1-xLl , 0 < x~ < c , 0) if P = (l34)(25) or

• 
- 

(l34)(2)(5),

(0, 10—c < x2 < 12+c, 160-x2—x4-x5, 
0 < xq < c~ 0 < x

5 
< c)

- 

if P = (l)(2345),

- 

(0, 0, 0, 0, 0) for all other P € fl. 

- 

•

It is clear’ that K (M~~~) = {(l2)(35) (Ls), (l34)(2)(5), (l34)( 25),
0 1 ,c

(l)( 2345)) which is more intuitive than K0(M~
1
~) U.

k Example 8.3. (The Chemical Company Game. See Anderson and Traynor (i].)

Two chemical companies C1 and C2 supply two fabricating companies
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F1 and F2. The permissible coalition structures are:

P1 
(C
1)(C2

)(F
1
)(F2), P2 (C1F1

)(C2
)(F

2
),

P3 
= (c1r2

)(c2
)(F

1
), P4 =

P5 = (C
1
)(C2F1

)(F1), P6 
(C1F1

)(C2F2), 
—

P7 
= IC1F2 C2F1

). 
- 

-

The respective payoffs (profits) to these coalitions in the particular

coalition structures are:

‘I )
P1: 25 , 15, 75 , 100. P

2
: 300 , 25 , 110.

P3: 500, 30, 85. P4 : 28 , 200 , 105.

P
5: 30, ‘425, 90. P6: 400, 600. c

l

P7: 700, 300. -

- 

- This “partition function” induces the characteristic function:

v(C1
) = 25, v(C

2) = 15, 
v(F

1) 75, v(F2) 100, v(C1,F1
) = 300,

v(C1,F2
) 500, v(C2,F1) = 200, v(C2,F2) 425.

--1 The bargaining set is given by

(25, 15, 75, 100) if P = P1

(115 x < 225,15, 300-x .100) if P= P
1 — 1 2

1 (90 < x1 
( 225, 15, 75, 500—x1

) if P = P
3

- (25, 15 < x
2 

< 125, 200-x2, 100) if P = P4

—48—
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~TT1
• (25, 15 < x

2 
< 125, 75, ‘425—x 2) 

jf P = P5

(x1, x2, 300—x1, 425—x2) if P = P6
• 

. *4’~(P) = where x1, x2 are as in Figure 8.6.

- (y 1, ~2’ 
200-y2, 500—y1) if P P7

where y1, y
2 are as in Figure 8.7.

X 2

125

- 
- 

90 115 225 90 115 200 225 y1

Figure 8.6. The bargaining Figure 8.7. The bargaining

set M~’~ (P6
) for the chemical set M~

’
~(P7) for the chemical

company game. company game.

The transition digraph is shown in Figure 8.8. Hence

= ((c1F1)(c2F2
), (C1F2)(C2F1)} 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



P1

P2 ~
‘7

~~~~~~
Z

~~~~~~~~~~~~

P6
3

P4 P5

~~~~ The transition digraph of the chemical company game.

9. Some Modifications of the_Coalition Structure Model

In this section, we look at some modifications of the domination

relation in the abstract game (i1(S),dom(S)). We define two other

domination relations one of which is stronger than dom(S) and the

other weaker than dom(S).

Definition 9~l. Let P1, 
P2 

e IT(S) and S be a p.s.c. Then P1

weakly dominates P2, 
denoted by P1 w-dom

(S) P
2
, if f

(9.1) for each y € S(P2
), ~ a nonempty R e P1 and x c S(P1)

such that -x
i > for all i £ R . -

—50—
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Definition 9.2. Let P1, 
P
2 

c fl(S) and S be a p.s.c. Then P~

strongly dominates P2, denoted by 1’~ s-dom(S) ~2’ 
1ff a a nonempty

R E P
1 

and x c S(P1) such that for all 
y E S(P2), x. > y. for all

i € R .

The following relations are direct consequences of Definitions 3.6,

9.1 and 9.2.

(9.2) If P1 s-dom(S) P2, then P
1 
dom(S) P

2
.

(9.3) If P1 dom (S) P2 , then P
1 

w-dorn (.S) P~.

Let K (S) and K (S) denote the cores of the abstract games
0,w 0,s

(JI(S),w-dom(S)) and (II(S),s-dom(S)) respectively. As a consequence of

* Relations (9.2) and (9.3), we have

- 

(9.4) - 1(
0,5
(S) ~ I(0

(S) ~ K0~~
(S).

Also, if S is a p.s.c. such that for each P c fl , S(P) is

either a single point set in E’~ or an empty set, then

(9.5) K05(S) = K0
(S) = K

0~~
(S).
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APPENDIX

The Aumann-Dreze Generalization of the Shapley Value for all

Simple Games with Four or Fewer Players

The table on the following pages contains all distinct proper simple

- 

games of four or fewer players excluding dunm,ies. All winning coalitions

are listed-—the minimal winning coalitions are listed first and separated

from the rest by a semicolon. The weighted voting representation given in

column 4 are the simplest ones. The Shapley value 0 of a c.s. depends

• only on the winning coalition contained in the c.s. The Shapley value

of all c.s.’s containing winning coalitions, in the sequence as in column 3,

is given in column 5. The Shapley value of a c.s. not containing any

winning coalition is zero for each player and therefore is not given in

column 5. Column 6 contains all c.s.’s in 1(
o(0) identified by the

winning coalition it contains. The last column indicates whether the game

exhibits the paradox of smaller coalitions or not.
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